Success Key Test Series\square	SUCCESS KEY TEST SERIES X (English) (Unit test-2 Math-2 (Ch-3,4)) Mathematics Part - II-	DATE:			
		TIME: 2 hrs			
		MARKS: 30			

Q. 1 A) Choose the correct alternative.
1)

In the given figure, O is the Centre of the circle, if $\angle \mathrm{AOB}=90^{\circ}$ and $\angle \mathrm{ABC}=30^{\circ}$, then $\angle \mathrm{CAO}$ is equal to
a. 30°
b. 45^{0}
c. 90°
d. 60°
2) Seg $P A$ and seg $P B$ are the tangents to the circle with centre O. A and B are the points of contacts. If $P A$ $=5 \mathrm{~cm}$, what is the length of PB?
a. 10
b. 5
c. 2.5
d. -10
3) In the figure alongside, find $m(\operatorname{arc} A E C)=$? if $\angle A B D=80^{\circ}, m(\operatorname{arc} D C)=75^{\circ}$

a. 205°
b. 210°
c. 230°
d. 250°
4) How many common tangents can be drawn to two circles, touching each other externally?
a. One
b. Two
c. Three
d. Four
5)

In the given figure, if $\angle D A B=60^{\circ}$ and $\angle A B D=50^{\circ}$ then $\angle A C B$ is equal to
a. 60°
b. 50°
C. 70°
d. 80°
B) Solve the following questions. (Any two)

1) In the figure Q is the contact point. If $P Q=12, P R=8$, then $P S=$?

2) Prove that, any rectangle is a cyclic quadrilateral.
3) In the adjoining figure, seg RS is a diameter of a circle with centre O. Point T lies in the exterior of the circle. Prove that \angle RTS is an acute angle.

Q. 2 A) Complete the following Activities. (Any two)

1) In figure, O is the centre of the circle and B is a point of contact. Seg $O E \perp$ seg $A D, A B=12, A C=8$, find (1) $A D$ (2) $D C$ (3) $D E$.

$A B^{2}=$ \qquad \times \qquad ... \{By property of tangent secant theorem\}
$\therefore A D=\frac{144}{8}$
$A D=$ \qquad units
$A D=18$ units, $A C=8$ units
$A D=A C+C D$
$18=8+C D$
$\therefore \mathrm{CD}=$ \qquad units
$C D$ is chord of the circle

$$
\mathrm{ED} \cong \mathrm{EC}
$$

... \{Perpendicular drawn from the centre to the chord bisects the chord\}

$$
\therefore \mathrm{ED}=\mathrm{EC}=\frac{\mathrm{CD}}{2}=\frac{10}{2}=
$$

$$
\ldots \quad \text { units }
$$

$$
\text { DE }=
$$

\qquad units
2)

In chord EF || chord GH. Prove that, chord EG \cong chord FH.
Fill in the blanks and write the proof.

```
    Proof: Draw seg GF.
    \angleFFG = \angleFGH
    \angleFFG=
```

\qquad

```
    \angleFGH = ..............
    .. inscribed angle theorem (II)
    ... inscribed angle theorem (III)
\thereforem(arc EG) =
...............
... from (I), (II), (III).
\therefore chord EG\cong chord FH
... inscribed angle theorem (II)
... inscribed angle theorem (III)
\(\therefore \quad\) chord \(\mathrm{EG} \cong\) chord FH
... from (I), (II), (III).
```

3) In the figure $m(\operatorname{arc} L N)=110^{\circ}, m(\operatorname{arc} P Q)=50^{\circ}$ then complete the following activity to find $\angle \mathrm{LMN}$.

$$
\begin{array}{ll}
& \angle \mathrm{LMN}=\frac{1}{2}[\mathrm{~m}(\operatorname{arc} \mathrm{LN})-[\\
\therefore & \angle \mathrm{LMN}=\frac{1}{2}[\\
\therefore & \left.\angle \mathrm{LMN}=\frac{1}{2} \times-50^{\circ}\right] \\
\mathrm{C} &
\end{array}
$$

B) Solve the following questions. (Any two)

1) If two circles intersect each other at points S and R. Their common tangent $P Q$ touches the circle at points P, Q.
Prove that, $\angle \mathrm{PRQ}+\angle \mathrm{PSQ}=180^{\circ}$

2) What is the distance between two parallel tangents of a circle having radius 4.5 cm ? Justify your answer.
3) In fig, $\triangle \mathrm{QRS}$ is an equilateral triangle. Prove that,
i) $\operatorname{arc} R S \cong \operatorname{arc} Q S \cong \operatorname{arc} Q R$
ii) $m(\operatorname{arc} Q R S)=240^{\circ}$.

Q. 3 Solve the following questions. (Any two)

1) Proof that: Tangent segments drawn from an external point to a circle are congruent.
2) Draw a circle of radius 2.6 cm . Draw a tangent to the circle from any point on the circle using centre of the circle.
3) Line I touches a circle with centre O at point P. If radius of the circle is 9 cm , answer the following.
(1) What is $d(O, P)=$? Why ?
(2) If $d(O, Q)=8 \mathrm{~cm}$, where does the point Q lie ?
(3) If $d(O, R)=15 \mathrm{~cm}$, How many locations of point R are line on line I ? At what distance will each of them be from point P ?

Q. 4 Solve the following questions. (Any one)
4) $\triangle X Y Z \sim \triangle D E F ;$ In $\triangle D E F ; D E=5.5, \angle E=40^{\circ}, E F=4.0 \mathrm{~cm}$ and $\frac{X Y}{D E}=\frac{6}{5}$ then construct $\triangle X Y Z$.
5) $\triangle L T R \sim \triangle H Y D$. In $\triangle H Y D$, where $H Y=7.2 \mathrm{~cm}, Y D=6 \mathrm{~cm}, \angle Y=40^{\circ}$ and $\frac{L R}{H D}=\frac{5}{6}$ and construct \triangle LTR \& $\triangle H Y D$.
Q. 5 Solve the following questions. (Any one)
6) $\square A B C D$ is a rectangle. Taking $A D$ as a diameter a semicircle $A X D$ is drawn which intersects diagonal $B D$ at X.
if $A B=12 \mathrm{~cm}, A D=9 \mathrm{~cm}$, find the values of (i) $B D$ (ii) $B X$.

7) Prove that: If an angle has its vertex on the circle, its one side touches the circle and the other intersects the circle in one more point, then the measure of the angle is half the measure of its intercepted arc.
